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Approximate relativistic center-of-mass variables are employed for the calcula- 
tion of the relativistic corrections to the Zeeman structure of the n = 2 energy 
level of positronium. 

1. INTRODUCTION AND NOTATION 

This paper calculates the relativistic corrections to the Zeeman structure 
of  the n = 2 energy level of positronium. Even though the topic is not new, 
the method is very advantageous, based on the use of relativistic center-of- 
mass (CM) variables (Krajcik and Foldy, 1974), as previously discussed by 
the author in a more detailed work on the Zeeman effect (Raspini, 1985). 
As a consequence of the consistency of the procedure, results may be 
considered quite reliable at this order of  approximation (v2/c 2) and in 
first-order perturbation theory. 

In Section 2 the reduced Breit Hamiltonian is introduced (Breit, 1947; 
Barker and Glover, 1955; Close and Osborn, 1970; Krajcik and Foldy, 
1974), which is correct up to the order of V2/C2; the "annihilation term" 
can also be included for the case of a particle-antiparticle system (Karplus 
and Klein, 1952). In the same section, the external electromagnetic (EM) 
interaction is generated (Sebastian, 1981; Raspini, 1985) for a uniform, 
constant, and weak magnetic field. To maintain, in a simple way, the 
consistency in the order of approximation, relativistic CM variables are 
adopted (Krajcik and Foldy, 1974). The elimination of  the kinetic whole- 
body effects is then achieved by considering (unperturbed) rest frame states 
(Raspini, 1985): these are the usual zero-momentum bound eigenstates of 
the nonrelativistic isolated Hamiltonian. I n  Section 3 the perturbation 
problem is examined for positronium or other particle-antiparticle systems 
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bound by internal EM interaction; the results are presented in Sections 4 
and 5. For a more complete discussion of the method see Raspini (1985) 
and references quoted therein. 

Notation is standard throughout the paper, with one exception: if a 
function (or operator) is first introduced as f (x ) ,  the symbols f or f (x )  will 
indicate the value of the function as originally defined; j~ will be used, 
instead, to signify the functional form. Therefore, in the case of a replace- 
ment x->y, I will write f ( y )  rather than f ( y )  [compare equations (1) and 
(4) in the following]. 

2. A REVIEW OF THE METHOD 

For an isolated system of two spin-l/2 fermions bound by internal EM 
interaction, one can propose the use of a reduced Breit Hamiltonian (Krajcik 
and Foldy, 1974): 

HB(pk, rk, S k ) :  H~)(pk, rk)+ H~(pk,  rk, Sk) , k=1,2  (1) 

where H ~  > contains the usual nonrelativistic terms 
2 

Pi 1 H~) Ko = L - - + - L - - ,  i , j = l , 2  (2) 
i 2m, 2 i~:j r o 

rij = ri - rj, r/j = [r0l, K/j = e,ej (3) 

and H~ ) represents the correction to H ~  >, of relative order 1/c 2. [For an 
explicit expression of H~  ) see Raspini (1985).] The employed symbols are 
standard: Pi = {p/b}, ri ={rb}, and Si ={S}} (with b =x,  y, z), denote the 
canonical momentum operator, position, and spin-l/2 operator of the 
particle labeled i, in an inertial, Cartesian, orthogonal, right-handed frame 
of reference C(x, y, z); mi and ei indicate masses and charges. 

In the presence of an external uniform and constant (weak) magnetic 
field B, the total Hamiltonian can be obtained as follows (Sebastian, 1981; 
Raspini, 1985): 

H~ot =/-]rB (pk - ekAk, rk, Sk) + ~ (4) 

Ak =�89215 a~= a~(~ ~ (1) (5) 

~(~ Si] (6) 
mi 

~ [piSi + a,(p, �9 

The given ~(0~ (nonrelativistic) and ~(1~ (relative order 1/c 2) neglect non- 
linear field contributions (weak B field); the anomalous magnetic moments 
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a~ are taken into account, as they are in H~ ~ (Raspini, 1985). Also note 
that we are working with units in which h = c = 1. Defining the interaction 
Hamiltonian / / i  = H to t -Hm one can easily separate it into two parts 
(Raspini, 1985): 

H, : H~~ Hi" (8) 

where H(~ ~ is nonrelativistic 

H~~ = - B  �9 L,  + (9)  

Li = r i x p i  (10) 

and H~ ~ is of relative order 1/c2: both are calculated keeping only linear 
terms in the external interaction. [For an explicit expression of H~ 1~ see 
Raspini (1985).1 

The definition of  internal momenta ( ~ ) ,  positions (p~), and spin 
operators (ot~), and that of total momentum (P = ~ pi) and position (R), 
can be done at the order of approximation we are working with ("relativistic 
CM variables"). According to Krajcik and Foldy (1974), 

p~ = [~r, + ( m J  M ) P ] + F,(CM variables), (11) m = ~  m i 
i 

ri = [p~ + r ]  + Gi (CM variables) (12) 

Si = [~ri] +H~(CM variables) (13) 

y ~ , = 0 ,  y rn, p, =0  (14) 
i i 

In equations (11)-(13), F~, G~, and Hi represent appropriate corrections, 
of order l i e  2 relative to the expressions in square brackets. [For more 
details see Krajcik and Foldy (1974), Sebastian (1979), Sebastian and Yun 
(1979), and Raspini (1985).] When using the replacements (11)-(14), the 
corrections are to be included for expressing H ~  ~ and H~ ~ in terms of CM 
variables; H(~ ) and H~ 1~ simply need the terms in square brackets (Raspini, 
1985): this is consistent with the overall order of approximation. After the 
algebra is done, we obtain the following results (Raspini, 1985): 

HB(Pk, rk, Sk) = h~)(~k, Pk) + h~)(~rk, Pk, Crk) + O,  (15) 

Ht(pk, rk, Sk)=h~~ Pk ,~k)+hO)(~k ,  pk, o 'k)+Ol (16) 

where the meanings of On and OI are given by 

o , l%m)  = 0 (17) 

(~tt/cm[ 01 [Kit ~m) = 0 ( 1 8 )  
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if [XI'rcm ) and [~'~m) are state vectors such that 

PlXI~cm ) = Pl~'~m) = 0 (19) 

The forms of the operators h~ >, h~ ~ h~ ), and h(/1) a r e  examined in Raspini 
(1985); the same operators will also be listed in equations (22) and (23) 
for the case of positronium. 

Since we are dealing with two-particle systems, it is to be remarked 
that the whole space can be spanned by the independent coordinates R 
(canonically conjugated to P) and p = P l -P2  (canonically conjugated to 
�9 r = ~1 =-"n2). In terms of these variables, the volume element may be 
defined in the form 

dv = dR dp (20) 

f d R = D  , D ~ o o  (21) 

For the simple case of a particle-antiparticle system (e.g., positronium), 
the explicit expressions of h~ ~, h~ ), h~ ~ and h~ 1) are as follows (Raspini, 
1985): 

2 
h(ff) = a7 a (22) 

m p 

h(1 ~ e ( l+a~) (B ,  a') (23) 
m 

4 ( ) 
h~)= "n __a 1 a (~" p) 1 

4rn3 2rn2 ~ p . ' n  -2m----- 5 ~-3(p. 'n) 

a ( 3 + 4 a )  [ (if5 ) ]  -~ 2m 2 ~ �9 x ~  

ae r [  4 (1+a)2+3  ] 
+~-7 - ( l + 2 a + 2 a 2 )  q 3 ~r 2 6(p) 

a ( l + a )  2 1 I ---7--(~r'P)27 
2m 2 p3 _ c r 2 - 3 p j  (24) 

h(/) 3e ~r2(B.x) e ( 1 - 2 a )  (~r. ~)(B. ~r) 
- 4 r n  3 4m 3 

ae 1 ae 1 
+gin 2 -  -p (B. ~) 8m 2 p3 (P" ~)(B- p) (25) 

m = ml = m 2 ,  e = el = --e2, a = e 2, a = a~ = a 2 (26) 

P =IPl, ~=c r t - c r2 ,  ~r = ~rl+~r2 (27) 
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The "annihilat ion" potential (Karplus and Klein, 1952; Sakurai, 1967; 
Grotch and Kashuba, 1973) is included in the fifth term of equation (24). 
In the same equation, the relationship tr~ = 3/4 has been utilized whenever 
convenient. 

For pure Dirac particles, which is certainly the case here, a is of the 
order of a (and a -~ 1/137). The energy corrections obtained from (24) [see 
equation (38) for clarity] are of magnitude m a  4, with contributions of higher 
order in a due exclusively to the presence of  the aforementioned anomalous 
moments: other ma 5 corrections cannot be predicted by means Of (24). See, 
for instance, Barker and Glover (1955) for a Hamiltonian similar to ours; 
also see Fulton and Martin (1954) for a quantum electrodynamics calcula- 
tion of  all the rna 5 energy corrections to the n = 2 level of positronium. 

3.  T H E  P E R T U R B A T I O N  P R O B L E M  

The unperturbed states will be chosen to be eigenvectors of P, corre- 
sponding to the eigenvalue 0. Furthermore, they will be specified as (bound) 
eigenstates of the isolated nonrelativistic Hamiltonian H~)(pk, rk), of  the 
orbital angular momentum L = ~i ri • Pi, of  the spin S = ~i Si, and of the 
total angular momentum J = L + S .  (We intend that they will be eigenstates 
of H ~  ), L 2, S 2, j2, and J~.) This results in the equations (Raspini, 1985) 

el . ) = 0  (28) 

( ,2____o~][ .)=E(n)l . )  ' E ( n )  = ma2 
\ m  p /  4n 2 , n = 1 , 2 , . . .  (29) 

(p x =)21 .)= t(t+ 1)1 .), t = 0 , . . . ,  n -1  (30) 

,~=1.)= s(s+l) l . ) ,  s=0 ,1  (31) 

(p xr~+~)21 "} = j ( j +  1)1 "), j=l l - s l  . . . .  , l + s  (32) 

[(pXrrY -pY~rX)+ o-Z]l ")=jzl:}, jz = - j , . . .  , j  (33) 

The (bound) eigensolutions of  equations (28)-(33) are well known (Messiah, 
1966), and may be labeled as 

10, n, I, s , j , j  z) (34) 

The perturbed eigenvalue problem is 

( HB + H,  )I't') = EIxI~) (35) 
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By means of first-order (degenerate) perturbation theory, one obtains the 
secular equation for the nth level (Raspini, 1985) 

det[(0, n, ylh~+h~~ n, y ' ) - e ( n ) ~ , . ] = O  (36) 

where 3', 3" number the degenerate states in the level, and e(n) is the energy 
correction to E(n).  The case n = 1 was examined in a previous paper 
(Raspini, 1985): here I study the structure of  the n --- 2 level. To that end, 
note that 

(0, n =2,  rlh~)l 0, n = 2 ,  3")=~3r;/W(n=2, l, s,j) (37) 

where 

W(n, l, s,j) = (0, n, 1, s,j, jZlh~)lO , n, I, s , j , j  z) (38) 

The 3', 3" indices in equations (36) and (37) can be assigned as follows: 

/ = 1 ,  

l=O, s=O,  j = O ,  j~=O ~ 3 '=1 

i:-O, s = l ,  j = l ,  j ~ = - l , O ,  1 ===> 3 /=2 ,3 ,4  

I : -1 ,  s=O, j = l ,  j ~ - : - l , O ,  1 ~ 3 ,=5 ,6 ,7  

l = l ,  s = l ,  j = O ,  j~=O ~ 3,--8 

I---1, s = l ,  j = l ,  j ~ = - l , O ,  1 ~ 3 '=9 ,10 ,11  

s = l ,  j = 2 ,  j~ = -2 ,  - 1 ,  0,1, 2 ~ y = 1 2 , 1 3 , 1 4 , 1 5 , 1 6  

The appropriate W values are available in the scientific literature 2 and will 
not be repeated here. Equation (37) is justified by the fact that h~ ) is even 
under the spatial parity inversion ~ r - - ~ ,  p-->-p (while states with / = 0  
and l=  1 have opposite partities), and commutes with the operators in 
equations (31)-(33). 

4. Z E E M A N  S T R U C T U R E  OF THE n = 2 
E N E R G Y  LEVEL OF P O S I T R O N I U M  

The secular equation can be rewritten in the convenient form 

det[ T ~ , -  A~8~,] = 0, y, y'  = 1 , . . . ,  16 (39) 

T,~,--(0, n --2, 3'lh,10, n =2,  Z/), h, = h~~ + h(~ 1> (40) 

A~ = ~(2) - w ~ ,  w ,  = w ( n  = 2, t, s , j )  (41) 

2See, for instance. Grotch and Kashuba (1973) for ma 4 values; also see Barker and Glover 
(1955). 
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where, according to the assignment of the 3' indices, W2 = W3 = W4; W5 = 
W6 = WT; W9 = Wlo = Wll; W12 = W~3 . . . . .  W~6. Noticing that hi is even 
under spatial parity, one obtains the following structure for T: 

( ~ ~  (42) T = \ N "  ] V /  

in which U is 4 x 4  (hi matrix elements of the l = 0  states), V is 12x 12 (hr 
matrix elements of the l = 1 states), and N', N" are null. Therefore 

det[ U~r,- hv3~,v,] = 0, 3', 3'' = 1 , . . . ,  4 (43) 

det[ Vvr,- avSvv,] = 0, 3,, 3,' = 5 , . . . ,  16 (44) 

are equivalent to equation (39). 
Examining equations (23), (25), it follows that all matrix elements of 

h~ between states with the same s must vanish, since h/ is odd under the 
spin interchange tr~--~tr2 (while s = 0  states are odd, and s =  1 states are 
even); clearly, ht is also odd under the time reversal: ~ - ~ ,  tr~ ~ - ~ r l ,  
t r 2 ~ - t r 2 .  With B x=  B y= O, B z= B (which shall be enforced from now 
on), we find that h/ behaves like the zeroth component of an irreducible 
tensor of rank one (Shankar, 1980): the relevant angular momentum is here 
given by the operator p x ~ + tr. As a consequence, the matrix elements of 
hi between states of different j ~ are null. More generally, the Wigner-Eckart  
theorem can be applied; here it quickly adds that V6ao = V1o.6 = 0 (see Section 
5). Taking these considerations into account, the first four solutions for 
e(2) are easily obtained from equation (43): 

3S (2roots)  ~ / = 0 ,  s = l ,  j = l ,  jZ=+l (45) 

e(2) = /1 (3S- -1  - 1 S )  -..b. [(B/2)2+�88 - 1S)211 /2  ~ l = 0 ,  

t 1 1 �9 1 1 jz= s = ~ •  j = ~ •  0 (46) 

with 

2"+1S = W(n =2 ,  l = 0 ,  s,j=s) (47) 

I' /~ = - ~ ( 0 ,  n =2,  l = 0 ,  s = 0 , j = 0 , j  z = 0 l h x l O ,  

n -----2, 1= 0,s '= 1 , j ' =  1,j  z =0)] 

i 

L\  96 ] \ 96 /  

The above results are quite similar to the analogous ones for the n = 1 level 
(Raspini, 1985); the quantum numbers listed in equations (45) and (46) 
indicate the unperturbed states to which the calculated corrections refer. 
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Another  three solutions are readily obtained from equation (44), observing 
that the 10th, 12th, and 16th rows and columns of  V are null; this gives 

e(2) = ~3P1 ~ I = 1, S = 1, j = 1, jz = 0 (49) 
[~P2 (2 roots) ~ l = l ,  s = l ,  j = 2 ,  j z = •  (50) 

with 2s+lpj = W ( n  =2,  l = 1, s , j ) .  The remaining nine solutions will come 
from 

det[ V~, v, - h~6~,] = 0, 3/, 3/'= 5 , . . . ,  9, 11, 13, 14, 15 (51) 

Equation (51) has the following structure: 

det Z* A" = 0  (52) 

A* N 

where each block is a 3 x 3 matrix, N is null, and the others are given by 

A ' =  d iag( -As ,  - h 6 ,  -A7), A"=  d i a g ( - h s ,  -3,9, - h . )  (53) 

A ' " = d i a g ( - h ~ 3 , - h ~ 4 , - h l S ) ,  A=diag(Vs,~3, V6,~4, V7,~5) (54) 

(i :) Z = ,8 0 (55) 

0 V7,11 

After some algebra, equation (52) yields 

[e(2) - 3p2][e (2) - 3P1][e(2 ) - ' P 1 ]  - [8(2) -3P2]  I v,,912 

- [e(2) - 3p1] I V5,~312 = 0 (56) 

[e(2) - 3P2][e (2) -.3P,][ e (2) - 'P , ]  - [e(2) -3/9211V7,,,I 2 

- [ e ( 2 )  - 3 p , ] [  v~,,512 = 0 ( 5 7 )  

[e(2) - 3p2][e (2) -3po][e  (2) - ' P ~ ]  - [ e ( 2 )  -~n~] l  V6,81 = 

- [e (2) - 3no] I V6,,412 = 0 (58) 

and, due to obvious symmetry reasons [time reversal, Merzbacher (1970)], 

I v5,912 = I VT,,,[ 2 , I v5,,31= = I v~,,512 (59) 

so that equations (56) and (57) are actually identical. 
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Cardan's procedure (Abramowitz, 1970) can be used to solve equation 
(58). Defining 

X = }[(3p2) + (3po) + ('P1)] (60) 

17 = (3P2)(3po) + (3po)(1p1) + ( 1 p 1 ) ( 3 P 2 )  (61) 

j/[2 = ]V6,si2/n2, 2( 2 = I V6,1412/B 2 (62) 

= (II - 3X 2) - B2(~/2 + W 2) (63) 

= [ X ( I I - 2 Z 2 ) - ( 3 P 2 ) ( 3 p o ) ( 1 P O ] - B 2 [ ( Y ~ - 3 P 2 ) ~ 2 + ( E - 3 p o ) . A  c2] (64) 

u =  2 L t 3 /  (65) 

we obtain 
[ X + ( u ' - ~ / 3 u ' )  ~ /=1 ,  s = 0 ,  j = l ,  j z = o  (66) 

e ( Z ) = ~ X + ( u " - ~ / 3 u " )  ~ / = 1 ,  s = l ,  j = 0 ,  j = = 0  (67) 
(?~+(u  .. . .  g ' /3u'")  ~ I=1 ,  s = l ,  j = 2 ,  j ~ = 0  (68) 

in which u', u", u'" are the three cube roots of u, in appropriate order)  
[The square root in equation (65) is a principal value.] Similarly, equation 
(56) may be treated by means of (60)-(68), with the replacements 3p0--> 3p~, 
I V6,8i2~ I V s,912, I V6,1412~ I v~,,3l z as well as j = 0 ~ j  = 1 [equation (67)] and 
j ~=  O-->j z=  -1  [equations (66)-(68)]; each solution will then be counted 
twice, to take into account equation (57) (j~ = 1). 

5. MATRIX ELEMENTS: CONCLUSIONS 

The typical elements needed to complete the calculations of Section 4 
have the structure 

(O, n = 2 ,1= l, s = O , j =  l,jZlhziO, n = 2 ,1= l, s '=  l , j ' , j  z) (69) 

and hi behaves like the zeroth component of an irreducible tensor of rank 
one. We can define (and, indeed, easily construct) a spherical vector operator 
v~13, q = -1 ,  0, 1, such thatv~13 = hl. The Wigner-Eckart theorem then states 
(Merzbacher, 1970) 

(0, n =2,  1= 1, s = 0 , j  = 1,j~ihl[O, n =2,  l =  1, s '=  1 , j ' , j  z) 

= 3 ( - l ) ; - l + J : ( j '  1 1 ) 
x/~ jz  O - j Z  

•  n = 2 , 1 = l , s ' = l , j ' )  (70) 

3The u-roots  are ordered so that the B ~ 0 limits of  solutions (66)-(68) are consistent with the 
indicated l, s, j quan tum numbers ;  for instance: Lims~o [solut ion (66)] = IP  1 . 
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where (iii) is a 3j-symbol (Messiah, 1966). I f j  ~ = O, the 3j-symbol vanishes 
with j ' =  1: this clearly shows that hi has a null matrix element between 
the states characterized by 3,=6 ( s = O , j = l , j ~ = O )  and 3, '=10 ( s ' = l ,  
j '  = 1,j  ~ = 0). In general, however, 

](0, n =2,  I=  1, s = O , j =  1,flh,]O , n =2,  1= 1, s ' =  1,j',j~)l 

= Be 1-~-~- N + a  1-~--~A (71) 

with the following values of  o9o, OgN, ogA : 

so that 

j ' = 0 ,  j ~ = 0  ~ Wo=V~/3, WN=OgA=32 

j ' = l ,  j ~ = 0  ~ O90=0 

j ' = l ,  j ~ = + l  ~ r  , O9N=16, OgA=O0 

j ' = 2 ,  j z = o  ~ O90=--~/-6/3, WN=20, WA=80 

j ' = 2 ,  j ~ = + l  ~ O90=--X/2/2, O9N=20, WA=80 

IW6,812=~-~m~(l+a)2 1 - 3 2  ] =1V8,6[ (72) 

[vs,912=lVT.. =~-~m 2 l + a - 1 6  / =lV,,,~l =1V9,51 

'2 2B2c~( a2 aa2.~ 2 
IV6.14r = ~  l + a  20 8 0 /  

(73) 

= [ V14,612 (74) 

I v5,,31 = = I vTo,~ = ~ 1 + a 20 80 / 

= I v,5,712 = I v,3,51 = (75) 

The results are consistent with those of  Grotch and Kashuba (1973), 
even though the methods employed in this paper are quite different (see 
also Grotch and Hegstrom, 1971). The procedure we have adopted makes 
use of  relativistic CM variables, which reduce the ten generators of  the 
Poincar6 group (for the isolated system) to the single-particle form at this 
order of approximation (Krajcik and Foldy, 1974). Specifically, the use of 
relativistic CM variables produces terms in the hi operator which would 
not be present otherwise: therefore, with nonrelativistic CM variables, one 
would have to modify the unperturbed states in order to achieve the same 
precision (Raspini, 1985). 
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